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1. Introduction. In using the successive overrelaxation (S.O.R.) iteration method 
to solve the matrix equation 

(1.1) Ax = f, 

finding the optimum overrelaxation parameter Wb is an important and often a diffi- 
cult part of the problem [1, p. 257]. When A is a 2-cyclic, consistently ordered, real 
symmetric, positive-definite matrix (this will be assumed in the rest of the paper), 
only the spectral radius p(2i) of the associated Gauss-Seidel iteration matrix 21 is 
needed to determine the optimum parameter Wb [2, p. 109]. When p(Q1) is close to 
unity, small changes in the estimate for p(Q1) can drastically affect the rate of con- 
vergence of the S.O.R. iterations and, thus, an accurate estimate of p(Q1) is needed. 

In practice, two basic approaches are often used to estimate p(Q1) or equiva- 
lently Wb. One approach is to carry out a number of S.O.R. iterations with some X < 
Wb and then on the basis of numerical results obtain a new estimate for Wb [1], [3], [4], 
[12]. A second approach is to obtain an estimate for p(L1), using the power method, 
prior to carrying out the S.O.R. iterations [1], [2], [5], [6]. The second approach is 
useful when the iterative process is slowly convergent, when the matrix problem 
(1.1) is to be solved a number of times for different vectors f, or when very accurate 
solutions are required. 

In this paper it is shown how to use Chebyshev polynomials to accelerate the 
convergence of the power method. The description of the procedure includes a 
method for terminating the iterations in an attempt to minimize the total computer 
time required to solve the problem. The method has worked well in practice in a 
number of difficult problems. More details are given in [13]. 

The numerical procedures given in this paper apply equally well when the cyclic 
Chebyshev semi-iterative method [2], [7] is used to solve the matrix problem (1.1). 

2. The Chebyshev Polynomial Method. By the S.O.R. method for solving (1.1) 
is meant the iterative process 

(2.1) Dxn+' = cI{Lxn+' + Uxn + f} + (1 - )Dn 

where D is a block diagonal matrix and L and U are respectively strictly lower and 
upper triangular matrices. With the assumptions of Section 1, (2.1) converges most 
rapidly when X= Wb, where 

(2.2) (b = 2/ {1 + [1 - p(21)jl } 

and p(21) is the spectral radius of the Gauss-Seidel matrix 2, = (D - L)-1U [2, p. 
111]. Also, the eigenvalues Xi of the q X q matrix 21 lie in the interval [0, 1) and may 
be ordered as 
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> X = X2 = *** = Xs-1 > Xs = Xs+1 = **- = Xt-1 > Xt >- 
... >-Xq >-?, 

where we assume that t > s [2, p. 107]. The ratio o- Xs/Xi is called the dominance 
ratio. We are concerned with finding X1 = p(21) 

In this section we assume that 21 has q linearly independent eigenvectors. Start- 
ing with a vector 

q 

(2.3) x(0) = a1u1 + asus + Z ui a1 / 0, 
iz= t 

where l1uj = Xjuj, we define 

x(r) = Pr(,Cl)X(O) 
(2.4) Pr(Xs) q Pr.(Xi) 

= Pr(Xi) alul + asus + E aiui 
+Pr (Xi) i=t Pr.(X1) au 

where Pr is a polynomial of degree r satisfying P,(Xi) % 0. If P,(y) = yr, (2.4) is the 
power method of iteration. In general x(r) approaches (in direction) the eigenvector 
u1 at a rate governed by max IP,.(Xi)/Pr(Xl) 1, 2 _ i _ q, if this maximum is < 1. For 
the Chebyshev method we take Pr(y) = Pr,q(Y), where 

(2.5) P , (y) =Tr(2y/Xil - 1) 
Tr.(2/oT - 1) 

and where Tr(z) is the Chebyshev polynomial of degree r. Among all polynomials P, 
of degree r in y and such that Pr(Xl) = 1, Pr,,(y) is the polynomial having the least 
maximum modulus over the range 0 ? y < Xs [8]. For a- close to unity, the Cheby- 
shev polynomial method is much faster than the power method [9]. 

For computational purposes the vectors x(r) of the Chebyshev method can be 
formed in sequence by the procedure [10] 

v(r) = Clx(r - 1), 

(2.6) X (r) = [v(r), x(r -1 )] 

[x(r - 1), x(r -1) 

x(r) = x(r -1 + axr v (r) x(r -1)] + 0,[x(r -1) -x(r -2)], 

where a, = 2/(2 - a), f3 = 0 and for r > 2 

4 T,1((2 - cr)/a-) Tr_2((2- 

ar - Tr((2 - a-)/a-) f r Tr((2- 

In the formula for X(r) the notation [v, w] denotes the inner product of two vectors 
v and w. We note that (2.6) reduces to the power method when ar = 1 and Or = 0, 
r = 1, 2, ... . Also, since the matrix vector product 21x(r - 1) may be obtained 
using (2.1) by setting f = o and co = 1, the iterative procedure (2.6) takes essentially 
the same coding as that required by the S.O.R. iterations. However, (2.6) requires 
one and possibly two more vectors of storage than do the S.O.R. iterations. This 
could be troublesome in the solution of large problems. This will be discussed further 
in Section 3. 

An accurate estimate for a- is important in the effective use of the Chebyshev 
polynomial method. This problem is discussed in Section 4. 
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3. Linear Elementary Divisors for 21. In general, the elementary divisors of the 
Gauss-Seidel matrix are not all linear. However, if the q X q positive-definite matrix 
A of (1.1) is partitioned in the "normal 2-cyclic" form [2, p. 101], 

Al B 
(3.1) AA= 

_BT A2_ 

then Tee [11] has shown that the Gauss-Seidel matrix associated with the partition- 
ing (3.1) has only linear elementary divisors. (Another proof of this fact can be found 
in [13].) Thus, when A is partitioned in the form (3.1), the Chebyshev procedure of 
(2.6) may be used to obtain an estimate for p(21). However, when A is of the form 
(3.1), one may use a different (and, perhaps, a better) Chebyshev procedure. 

The Gauss-Seidel matrix 2L associated with (3.1) may be written as 

(32) ?i =L A ' 

-B T A2- -0 0- -0 A21BTA-'Bi 

Thus, the nonzero eigenvalues of 21 are the same as those of A2-'BTA -IB and 
P(.i) = p(A2-lBTA -'B). Also, the elementary divisors of A 2-iBTA -'B are linear, 
since the matrix A2-IBTA,-'B is similar to the symmetric matrix A2-1 '2BTA 1- 
BA2212. Hence, the Chebyshev polynomial method may be applied to the matrix 
A2-1BTA 1-'B and can be carried out by the procedure 

{v(r) = A21BTA-Bx(r - 1) 

(3.3) X (r) = A[x(r), A(r-1)] 

[x(r - ),(r - 1)]' 
x (r) =x(r -1 + aXr [Xr) x(r -1 + rx(r -1) x(r -2)], 

where a! and 0r are as defined in (2.6). 
It is not necessary to form the matrix A2-1BTAl-'B explicitly in order to carry 

out (3.3). The vector 6(r) may be obtained implicitly by 

(3.4) y (r) = Al'-Bx(r - 1), 
v (r) = A y 

Thus, to obtain v(r) requires the same work as does the v(r) of (2.6). However, the 
eigenvalue and extrapolation calculations in (3.3) use vectors with fewer components 
than those used in (2.6). For example, if A1 and A2 are matrices of the same order, 
then the vectors x(r) of (2.6) contain twice as many components as do the ?(r) of 
(3.3). Thus, the arithmetic computations and the vector storage requirements of 
(3.3) are less than those of (2.6). 

4. Computational Strategy and Numerical Results. In this section it is assumed 
that A is partitioned in the normal 2-cyclic form (3.1). Thus, the Chebyshev itera- 
tive procedure (2.6) or (3.3) may be used to estimate p(2i). To complete the descrip- 
tion of the Chebyshev algorithm, we shall (a) specify a means of estimating o, (b) 
discuss the strategy of the algorithm, and (c) give a criterion for terminating the 
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iterative procedure (2.6) or (3.3). Finally, we discuss some numerical results. 
a. Estimating a-. Numerical estimates for a- are obtained by observing the decay 

rate of the residual vector y(r) _ v(r)/X(r) - x(r), where v(r), X(r), and x(r) are de- 
fined by (2.6). We define the residual vector quotient as 

(4.1) Q(r) = jjy(r)jj/jjy(r - 1)jj , 

where 11 1 denotes some suitable vector norm. Since for the power method, Q(r) >-a 
[13], an initial estimate for a- may be obtained by doing a few power iterations and 
computing Q(r) before starting the use of Chebyshev polynomials. 

Estimates for a- are obtained at every Chebyshev iteration by comparing the con- 
vergence rate actually being obtained with the theoretical convergence rate one 
would obtain if the o- being used were correct. If a Chebyshev polynomial using ao 
as the estimate for a- is started on iteration k + 1 and if 

(4.2) (i) X(k + r + 1) is sufficiently close to X1 for all r > O, and 

(ii) 11 ELt Pr,,0(Xj)ajujjj is small relative to j|Pr,g0(Xs)ausujj 
then from (2.4) and since Pr,gO(Xi) = 1, we may approximate x(k + r) by alul + 
Pr,gO0(Xs)asus. Hence, the residual vector y(k + r + 1) may be approximated by 
y(k + r + 1) (a- 1)Pr,aO(Xs)asus and the residual vector quotient by 

(4.3) Q(k + r + 1) |Pr,0 (Xs)/Pr-1o,0(Xs)j I 
where Po,gO(y) =1.0. With Qr+?i H=r Q(k + 1), it follows from (4.3) that 

(4.4) Qr+i IPr,ao(s) I - 

Solving for the largest positive solution Xs of (4.4) and dividing by Xi, one obtains 
the estimate* 

(45) 0- 2 {cosh [cosh1 {Qr+?Tr(2/lo- 1)) } 

Thus, if the assumptions given in (4.2) are valid, expression (4.5) will give a good 
estimate for a-. Obviously, these assumptions do not always hold. However, they 
may be reasonable under certain conditions. The Chebyshev strategy given below is 
designed toward this end. 

b. Chebyshev Strategy. Let the kth iterate in the Chebyshev procedure be ex- 
pressed in the form 

(4.6) x(k) = Prn,an(i) ... 
*Prj,oj(Si)Pr0g0 (4Ci)4Ci4x(0) 

where Pr,d(2l) is the Chebyshev polynomial of degree r in which d is used as the 
estimate for a- and where k = 4 + ro + * * * + rn. Using the notation of (4.6), the 
Chebyshev strategy is first to do four iterations of the power type to obtain an initial 
estimate, a-,, for a- and a reasonable estimate for X1. In addition, these power iterates 
tend to eliminate from the eigenvector guess x(0) those eigenvector modes corre- 
sponding to small eigenvalues. Starting with iteration 5, low-degree Chebyshev poly- 
nomials are repeatedly applied, with the estimates for the dominance ratio being con- 

* If {Q+T,(2/o-o - 1)} < 1, then cos and cos-1 should be used in (4.5) instead of cosh and 
coshl. 
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tinuously updated. Upper limits of the form ?o < .9, 1 <_ .95, 2 <_ .985 are imposed 
on the first few estimates for o- in an attempt to insure that these initial estimates be 
less than o. Those polynomials for which o- is underestimated will greatly reduce all 
the eigenvector modes in the estimated vector x(O) except those with the larger 
eigenvalues.* This results in assumption (ii) of (4.2) being more nearly satisfied 
which, in turn, enables the estimates for o- to converge to the correct value. As o? 
approaches o, high-degree polynomials are applied. 

The strategy for terminating a Chebyshev polynomial and starting the genera- 
tion of a new polynomial using an improved estimate for o- is made by comparing the 
convergence rate being obtained with the theoretical convergence rate one would ob- 
tain if the estimate for o- were correct. If a Chebyshev polynomial using 00 as the 
estimate for o- is started on iteration k + 1, then from Eq. (4.3) the convergence rate 
actually being obtained on iteration k + r is -ln[Q(k + r + 1)]. Now if 0o = o, the 
Chebyshev theory of Section 2 implies that the theoretical convergence rate of itera- 
tion k + r should be -ln[Tri1(2/oo - 1)/Tr(2/o0 - 1)]. Thus, the criterion 

(4.7) R(k + r + 1) = ln n[Q(k + r+1)] -<61) < 
In[Tri1(2/o-o - 1)/Tr(2/o-o - ) 

for starting the generation of a new polynomial automatically causes the degrees rn 
to become larger as o- tends to o. It is often helpful to require all polynomials gener- 
ated to be at least of degree r*, where r* is 3 or 4. 

c. Terminating the Iterative Procedure. Let Iopt be the number of iterations re- 
quired by the successive overrelaxation method using optimum C, and let Iw(k) be 
the number of iterations required when 

(k) 2/ {1 + (1 - (k)) 1/2} 

is determined from the kth approximation, X(k), of the X iterations. We wish to 
terminate the X iterations when X(k) is so close to p(41) that 

(4.8) Iwo()/Iopt - 1 < a , 

where a is a number at our disposal. The quantity a represents the relative number of 
additional S.O.R. iterations required because cA(k) rather than &.b is used in (2.1). 

In order to use (4.8) to terminate the X iterations, we must find some way to 
estimate 'w(k) and Iopt. Assuming that P(21) 1 and X(k) p(21) it is shown in [13] 
that (4.8) may be approximated by 

(4.9) 21 X(k) - X(k - 1)1 _ < a X (k) > p(231) (4.9) ~2[1 - X(k)][l - Q(k)] 

rJX(k) Xk 1)1 1/2 

(4.10) {1 X(k)]l -Q()k)]} < a, X(k) < p (21) 

Since in practice it usually happens that X(k) < p(21), we terminate the iterations 
when (4.10) is satisfied. 

The convergence quantity a of (4.8) determines the total number of iterations 
required to solve the problem. To minimize computer time, it is desired to find the 

* For example, if a = .889 and if a 5th-degree Chebyshev polynomial is generated with ao = .8, 
then all eigenvector modes ui with (Xj/X1) < .8 are multiplied by a factor smaller than .017, while 
the us eigenvector mode is multiplied by a factor of .211. 



ESTIMATING OPTIMUM OVERRELAXATION PARAMETERS 65 

value of a which minimizes this total number of iterations. In what follows we 
attempt to determine this optimum value experimentally. 

d. Numerical Results. We now give two numerical examples which illustrate the 
effectiveness of the Chebyshev polynomial method. In each example A is partitioned 
in the form (3.1). We take f = o so that the solution of (1.1) is x = o. All components 
of the initial guess vector are taken to be 1.0 and the S.O.R. iterations are continued 
until the maximum vector component is less than 10-6. The X iterations performed 
prior to the S.O.R. iterations are carried out using the procedure given by (3.3) and 
the Chebyshev strategy is that as described in parts a and b of this section. For 
comparison purposes, the X iterations were also carried out using the power method. 

TABLE 1. PROBLEM A 
Chebyshev Acceleration 

k A(k) w(k) a(k) 6(k) I@(k) I T(k) 

5 .997684 1.90816 .89864 .79 > 5,000 > 5,000 

33 .999782 1.97091 .99798 .9 1,522 1,555 

49 .999797 1.97189 .99978 1.15 1,442 1,489 

70 .999813 1.97302 .99982 .87 1,354 1,424 

82 .999834 1.97453 .99980 .69 1,228 1,310 

103 .999865 1.97706 .99976 .45 987 1,090 

115 .999876 1.97798 .99974 .31 870 985 

130 .999884 1.97869 .99972 .13 739 869 

132 .999885 1.97874 .99972 .11 722 854 

Power Iterations 

k | X(k) | c@(k) | oa(k) 5 (k) | I V(k) IT(k) 

5 .997684 1.90816 .89864 .75 > 5,000 > 5,000 

38 .999190 1.94499 .97795 1.00 3,322 3,360 

103 .999674 1.96451 .98529 .76 

200 .999782 1.97092 .99802 .88 1,522 1,722 

250 .999793 1.97163 .99934 .98 1,465 1,715 

300 .999797 1.97193 .99970 1.02 1,441 1,741 

In Tables 1 and 2, k is the iteration index for the X iterations, Iw(k) is the number 
of iterations required to solve (1.1) to the required degree of accuracy using w (k) as 
the overrelaxation parameter, IT(k) = k + Iw(k), and 6(k) is the left-hand side of 
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(4.10). A graph of k vs IT(k) for problem B is given in Fig. 1. Table 3 clearly shows 
the advantage of the Chebyshev polynomial method over the power method. 

TABLE 2. PROBLEM B 
Chebyshev Acceleration 

k X(k) w) a ( Qk) I(k) I@(k) IT(k) 

5 .995636 1.87607 .88427 .77 1,372 1,377 

13 .998096 1.91639 .97447 .93 864 877 

24 .998798 1.93298 .99392 .74 640 664 

40 .998920 1.93638 .99957 1.19 590 630 

64 .999278 1.94768 .99931 .44 394 458 

78 .999353 1.95041 .99914 .13 311 389 

80 .999358 1.95058 .99912 .09 299 379 

120 .999361 1.95068 .03 289 409 

Power Iterations 

k X(k) w(k) o(k) 6(k) Iw(k) IT(k) 

5 .995636 1.87607 .88427 .77 1,372 1,377 

35 .998140 1.91732 .97724 .81 854 889 

99 .998789 1.93278 .99559 .77 642 741 

150 .998882 1.93529 .99899 .97 608 758 

200 .998922 1.93642 .99954 1.12 588 788 

250 .998950 1.93722 .99961 1.12 576 826 

300 .998974 1.93794 .99958 1.06 565 865 

TABLE 3 

Minimum I T(k) 

Chebyshev Power 
Problem Method Method 

A 854 1,715 

B 379 741 
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PROBLEM B GRAPH OF k VS 1T 

For the two problems considered here, IT(k) is minimized for the Chebyshev 
iterations when a is about .1. Obviously, a different value for a would minimize 
IT(k) for other problems. It has been found, however, that a convergence criterion for 
the X iterations of 5(k) < .2 works well for most problems. 

Other numerical examples are given in [13]. 
e. Nonnormal Partitionings of A. It is sometimes more convenient from a pro- 

gramming point of view to use a 2-cyclic partitioning of A which is not normal. For 
this case, however, the Chebyshev algorithm (2.6) usually requires many more 
iterations to estimate p(42l) accurately than would comparable problems with the 
normal partitioning (3.1). This is because ?l may have nonlinear elementary divisors 
corresponding to the eigenvalue 0. In [13] there is presented a modification of the 
Chebyshev polynomial method which helps to overcome this difficulty. 
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